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Predictions are constantly generated from diverse sources to optimize cognitive functions in the ever-changing environment. However,
the neural origin and generation process of top-down induced prediction remain elusive. We hypothesized that motor-based and
memory-based predictions are mediated by distinct descending networks from motor and memory systems to the sensory cortices.
Using functional magnetic resonance imaging (fMRI) and a dual imagery paradigm, we found that motor and memory upstream systems
activated the auditory cortex in a content-specific manner. Moreover, the inferior and posterior parts of the parietal lobe differentially
relayed predictive signals in motor-to-sensory and memory-to-sensory networks. Dynamic causal modeling of directed connectivity
revealed selective enabling and modulation of connections that mediate top-down sensory prediction and ground the distinctive
neurocognitive basis of predictive processing.
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Introduction
Generating predictions is a trait of adaptive organisms to
efficiently interact with the environment (Conant and Ashby
1970; Schultz et al. 1997; Friston 2010). For example, a seminal
trend in cognitive neuroscience considers perception to depend
on dynamic predictions based on the internal models of external
world (Rao and Ballard 1999; Bar 2007; de Lange et al. 2018). In
contrast to the “ascending” information flow from sensory to
nonsensory areas, coordinated “descending” projections from
nonsensory to sensory areas provide a neural substrate for
conveying top-down sensory predictions (Mumford 1992; Rao
1999; Rao and Ballard 1999; Bastos et al. 2012; Shipp 2016; Keller
and Mrsic-Flogel 2018).

How descending projections convey predictive signals in
the human brain remains enigmatic. Theoretically, the action-
perception loop that links an agent’s cognitive system and the
environment necessitates multiple forms of predictions. One
category of predictions is motor based. According to theories
of motor control, the agent could use a copy of the endogenous
motor command and a model of action-consequence coupling
to predict the sensory consequences of actions (Wolpert and
Ghahramani 2000; Shadmehr et al. 2010; McNamee and Wolpert
2019). Motor-based predictions could be used for world state
estimation (Wolpert et al. 1995), and the resulting prediction error
could drive immediate motor correction as well as long-term
motor learning (Jordan and Keller 2020). Whereas, predictions
that do not involve an agent’s actions are exemplified by the

suppression of neural response to statistically organized stimuli
(e.g. structured sequences (Garrido et al. 2009; Todorovic et al.
2011) or associated pairs (Kok, Jehee, et al. 2012; Garner and Keller
2022). Humans learn rich statistical regularities in the external
world and utilize exogenous information by transforming
memory traces into sensory predictions. The combination of
motor-based and memory-based predictive algorithms constructs
a dual-stream prediction model (DSPM) (Tian and Poeppel 2013;
Tian et al. 2016)—motor and memory systems could reverse
their traditionally assumed roles as receivers of sensory infor-
mation to act as independent sources that provide endogenous
and exogenous information for generating sensory prediction
(Fig. 1a).

Methodological challenges also obstruct the investigation of
the neural basis of prediction. This is partly because of the spatial–
temporal overlapping between descending prediction and ascend-
ing input during perception (Keller and Mrsic-Flogel 2018). More-
over, most studies investigate predictive processing by probing
how prediction modulates perception, granting them only indirect
access to descending predictive signals (Todorovic et al. 2011; Kok,
Jehee, et al. 2012; Kok, Rahnev, et al. 2012). The perceptual mod-
ulation approach focuses on the local computation of prediction
error in the sensory cortex. But this indirect assessment of pre-
dictive signals faces difficulty in revealing the neural origin and
generation processes of descending predictions that constrain the
cognitive computations as well as the neural implementation of
predictive processing from a system perspective.
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Fig. 1. Model of distinct pathways for generating prediction, experimental paradigms, and fMRI results of univariate analyses. a) The DSPM. The model
posits that auditory representations in the temporal area can be established by two descending streams. The motor-to-sensory stream originates from
the frontal motor network where speech plan encoding is carried out. A copy of the motor plan (efference copy), relaying via the IPL, establishes auditory
representations in the auditory cortex to predict the sensory consequence of speech action. The memory-to-sensory stream, originating in a distributed
memory network, including the prefrontal cortex, hippocampus, and superior parietal lobe, reconstructs auditory representations in the auditory system
via memory retrieval. b) Experimental paradigm. Following a 500-ms fixation period, participants watched a muted video of objects in motion (frames
from the bouncing basketball video are used for illustration). Participants were asked to imagine sounds ought to be in the video (e.g. the whomp of a
basketball hitting the floor repeatedly) in the IN condition and imagine saying characters superimposed on the video in the IS condition. c) Activations in
the inferior parietal and superior temporal regions during IS and IN. Top: Activations in the left hemisphere. Bottom: Activations in the right hemisphere.
Left: The mosaic view. Colored voxels were activated significantly in IS (red), IN (blue), or both (purple). Right: Thresholded surface rendering with t-value
indicated by the color bar. See also Supplementary Fig. S1. d) Thresholded surface rendering showing the conjunctions (minimum statistic) between
(i) IS > IN and IS and (ii) IN > IS and IN. IS induced stronger activations in the left PMC and preSMA, whereas IN induced stronger activations in the
bilateral fronto-parietal and CONs.

Mental imagery serves as a promising paradigm for directly
scrutinizing what and how descending projections convey
predictive signals. Imagery, a cognitive capacity to endogenously
create episodic mental states (Langland 2020), has been widely
reported to elicit perceptual-like neural representations (Zatorre
et al. 1996; Kosslyn et al. 1999; O’Craven and Kanwisher 2000;
Bunzeck et al. 2005; Kraemer et al. 2005; Hubbard 2010) that arise
from top-down connectivity (Dentico et al. 2014; Dijkstra et al.
2017; Pearson 2019).

Definitions of sensory prediction commonly have 2 compo-
nents: the top-down generation of perceptual representations,
and the interaction between prediction and sensory afference.
Because both sensory prediction and imagery reactivate percep-
tual representations of possible sensory outcomes, imagery has

been argued to be a mental realization of prediction (Moulton
and Kosslyn 2009) and to exploit the same set of internal models
as implemented in predictive processing (Langland-Hassan 2016;
Williams 2021). In the perspective of prediction-afference interac-
tion, mental imagery has also been shown to modulate perceptual
processing in a wide range of modalities similar as prediction does
(Tian and Poeppel 2013, 2015; Kilteni et al. 2018; Tian et al. 2018;
Ma and Tian 2019). Imagery thus exhibits significant parallels to
prediction in both aspects.

Therefore, we leveraged mental imagery to investigate
descending projections that establish auditory representations
in the absence of confounding ascending signals to trace the
neural origin of predictions. Moreover, our novel dual-imagery
paradigm maximized the differences between motor-based and
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memory-based prediction as participants were asked to imagine
speech or natural sounds that human articulators cannot produce
(Fig. 1b). The DSPM model and preliminary empirical findings
(Tian and Poeppel 2010; Tian et al. 2016; Ma and Tian 2019; Li
et al. 2020) derive three major experimental predictions. First,
both motor-based and memory-based predictions in different
types of imagery would reactivate the auditory cortex without
external acoustic stimulation. Second, the upstream networks for
generating sensory predictions should be distinct. Motor-based
imagery would activate the frontal motor network, whereas
memory-based imagery would involve the frontal–parietal and
hippocampal networks. Third, and most importantly, information
would flow directionally from motor or memory upstream
systems to auditory areas in distinct functional descending
networks that mediate the generation of prediction. The parietal
lobe in particular would relay descending projections, with poste-
rior parietal cortex (PPC) subserving memory-based prediction
(Dijkstra et al. 2017; Sestieri et al. 2017) and inferior parietal
lobe (IPL) as a sensorimotor interface in speech (Hickok and
Poeppel 2007; Hickok 2012) subserving motor-based prediction
(Tian and Poeppel 2010; Tian et al. 2016; Li et al. 2020). These
hypotheses were tested using fMRI. We performed whole-brain
statistical parametric mapping and multivariate pattern analysis
to identify regions of interest (ROIs) for subsequent dynamic
causal modeling (DCM) of directed (i.e. effective) connectivity. We
obtained evidence that supported our hypotheses and revealed
the origin, structure, and endpoint of dual-stream descending
connections in generating predictions.

Materials and methods
Ethics statement
The experimental protocol was approved by the Institutional
Review Board at New York University Shanghai (IRB00009975/
FWA#00022531) in accordance with policies and regulations found
in The Common Rule (45 CFR part 46).

Participants
Twenty-nine right-handed, native Mandarin speakers participated
in the experiment with informed consent and received monetary
incentives. No participant reported a history of neurological or
psychological illness. All participants had normal or corrected-
to-normal vision. Data from four participants were removed from
analyses due to excessive head motion (>5 mm in any session) or
drowsiness during scanning. The remaining 25 participants were
included in the analyses (12 females; mean age ± SD = 21.3 ± 2.3).

Materials
Ten different 7 s video clips with their corresponding audio
tracks were selected and used as the stimuli in the experiment.
All video clips were about scenes or objects and none of them
contained human speech. Examples included a basketball
bouncing on the wooden floor, a train quickly passing by, and
a ringing telephone. Our motivation was to choose videos with
sounds that were hard to simulate with human vocal organs
but easy to imagine with the aid of visual scenes. Every 500 ms,
a square image patch was superimposed on the center of
the video, making a total of 14 patches. These images were
either Chinese characters (black, against a white background)
constituting a sentence that described the content of the video
(e.g. “ ”; “A basketball bounces on the
wooden floor over and over”; see Supplementary Table S1 for
sentences describing all 10 videos), or mosaics made by randomly

shuffling pixels of the Chinese characters, thus serving as
nonlinguistic visual controls that share equal net luminance as
the character images. We also created synthesized speech of the
sentences in a male’s voice using the VoiceGen toolbox (https://
github.com/ray306/VoiceGen).

Procedure
We presented participants with 12 sessions of videos following
a structural scanning session. During the first three sessions,
participants were presented with videos with the original audio
tracks with mosaics overlaid on them. We refer to this condition as
“Hearing of Nonspeech” sounds (HN). Each “HN” session consisted
of 22 trials, which included two catch trials featuring a pure tone
(frequency = 1,000 Hz, duration = 715 ms) played at a random time
point of a random video. The other 20 trials consisted of 10 videos
each played twice in random order. After watching each video,
participants were asked to report if they heard the pure tone
in the video by pressing button 1 (for yes) or button 2 (for no)
on an MRI-compatible response pad. HN condition was designed
for localizing auditory areas and allowed participants to encode
auditory memory of the nonspeech sounds for later retrieval.

Three sessions of “Imagery of Nonspeech” (IN) followed. In
these sessions, videos were muted, and mosaics were overlaid in
the center. Participants were instructed to imagine the sounds
they heard during the preceding HN sessions, thus inducing
memory-based auditory reactivation. Participants rated the
vividness of imagery (rating range = 1–5) with the response pad
at the end of each trial. This visually aided imagery of the
nonspeech task was similar to previous studies (Bunzeck et al.
2005). Thereafter, came three sessions of “Imagery of Speech” (IS)
where the videos were also muted and Chinese characters were
overlaid on the videos. Participants were instructed to imagine
saying the characters and gave a vividness rating afterward. “IS”
was hypothesized to also recruit auditory representations but
through a motor-based pathway. Every IS or IN session consisted
of 20 videos with each of the 10 videos randomly played twice.

The task in the last three sessions was “Hearing of Speech” (HS),
which was designed to localize auditory areas responsive to verbal
stimuli. During the video presentation, the original audio track
was replaced with synthesized speech. Similar to the HN sessions,
two catch trials were included in each “HS” session in which
two nearby characters in the synthesized speech were reversed
(e.g. to ; firecracker to “crackerfire”). Participants indicated
whether they heard a reversal using the response pad in a similar
manner as in HN sessions.

Trials in every session shared a similar procedure, starting with
a 500-ms fixation period, followed by 7 s of video presentation,
a button response from the participant for vividness rating (IN
and IS) or catch trial detection (HN and HS), and an intertrial
interval of either 4.44 or 6.66 s (2 or 3 repetition times [TRs] for
fMRI scanning) minus the response time for rating or detection.
The participants were asked to make the button response within
3 s. A trial would be considered invalid if the participant did not
respond in the time limit or made an incorrect response for catch
trial in HN and HS. Invalid trials were separately modeled and thus
excluded from formal analyses.

The order of sessions (HN–IN–IS–HS) was designed to simplify
instructions while reducing confounds. The HN and IN sessions
allowed encoding and subsequent retrieval of nonspeech sounds,
and they proceeded IS and HS such that participants were less
likely to perform IS during IN. IS proceeded HS because there oth-
erwise existed an alternative strategy for participants to retrieve
their memory of the synthesized speech they had listened to,

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/33/14/8890/7169133 by N

ew
 York U

niversity Libraries user on 04 Septem
ber 2023

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad168#supplementary-data
https://github.com/ray306/VoiceGen
https://github.com/ray306/VoiceGen


Qian Chu et al. | 8893

maximally separating the putative motor-based and memory-
based mechanisms for perceptual prediction.

fMRI data acquisition
MRI images were collected on a Siemens MAGNETOM Prisma
System (Erlangen, Germany) at East China Normal Univer-
sity. Anatomical images were acquired using a T1-weighted
magnetization-prepared rapid acquisition gradient echo sequence
(192 sagittal slices; field of view [FOV] = 240 mm × 240 mm;
flip angle [FA] = 8◦; TR = 2,300 ms; echo time [TE] = 2,320 ms;
voxel size = 0.9375 × 0.9375 × 0.9000 mm3). Functional images
were acquired using a T2∗-weighted echo-planar imaging pulse
sequence (38 even-first interleaved slices; FOV = 192 mm × 192 mm;
FA = 81◦; TR/TE = 2,220/30 ms; voxel size = 3.0 × 3.0 × 3.6 mm3;
interslice gap = 0.6 mm). Functional slices were oriented to an
approximately 30◦ tilt toward coronal from AC–PC alignment to
maximize the coverage of individual brain volumes.

Preprocessing
Preprocessing of fMRI data and subsequent analyses were imple-
mented via SPM12 (https://www.fil.ion.ucl.ac.uk/spm/, version
7771) and custom-written scripts with MATLAB R2021a (Math-
Works Inc., Natick, MA, United States). Preprocessing followed the
standard procedure in SPM12.

All functional images from each participant were temporally
interpolated to the first slice of each volume and were spatially
realigned to the mean image. The structural image was coreg-
istered with functional images. For univariate and connectivity
analyses, functional images were then spatially normalized to
the Montreal Neurological Institute (MNI) standard brain space
(resampled voxel size = 2 mm isotropic) and were smoothed with
a 6-mm full width, half maximum (FWHM) Gaussian kernel.
For multivoxel pattern analysis (MVPA), the functional images
were neither normalized nor smoothed to preserve information
patterns in the individual’s native brain space.

Univariate analysis
Events were modeled as sustained boxcar epochs spanning
their corresponding duration. They included the presentation
of fixation points, videos (in which participants performed the
imagery and hearing tasks), instructions for vividness rating or
catch trial detection, and button presses. Events in catch trials,
no-response, or wrong-response trials, were modeled separately
to improve the model sensitivity. All events were convolved with
a canonical hemodynamic response function implemented in
SPM12 and were entered as regressors into a general linear
model (GLM) for each individual. Each GLM also included head
motion regressors and session-wise baseline regressors. The GLM
was then estimated using functional data high-pass filtered
at 1/128 Hz. Individual-level contrasts were constructed using
the beta estimates of regressors of interest and were subject to
a one-sample t-test for group-level inference. For whole-brain
mapping throughout the paper, we used cluster-wise PFDR < 0.05
to determine the statistical significance, where clusters were
defined with an uncorrected threshold of P = 0.005.

To examine common activation in imagery and comparable
hearing conditions, we used a conjunction (i.e. minimum statis-
tics) approach (Nichols et al. 2005). We obtained thresholded
(t24 > 2.80, P < 0.005, PFDR < 0.05) t-value maps from imagery and
hearing conditions (IS and HS, IN and HN), computed the smaller
t-value of the 2 conditions for each voxel, and reported only voxels
that were significant (t24 > 2.80) after the operation. Similarly, to

examine differential activations in IS and IN, we took the mini-
mum t-value from the IS and IS > IN contrasts as well as IN and
IN > IS contrasts. Therefore, all significant voxels showed both
significant activities during one type of imagery and significant
difference over the other.

Multivoxel pattern analysis
To test whether the activated areas represent imagery contents,
we trained support vector machine (SVM)-based classifiers to
decode the imagery associated with 10 video categories in
IS and IN (MVPA) using The Decoding Toolbox (TDT, version
3.999E) (Hebart et al. 2015). It is noteworthy that there exists
another approach for characterizing brain-specific represen-
tations, namely the representational similarity analysis (RSA)
(Kriegeskorte et al. 2008). We deem it less suitable for the present
study in that (i) RSA relies on a prespecified representational
dissimilarity matrix derived from experimental conditions,
usually measured by physical properties of behavior or stimulus.
Yet, it is impossible to determine such dissimilarity, given the
nature of imagery as a purely subjective experience. (ii) Even
if we compute dissimilarity from the physical counterparts of
imagery (e.g. articulatory or acoustic, as in Zhang et al. 2020)
as an approximation, the long-duration imagery contents (7 s)
and the slow dynamics of BOLD signals would likely make the
resulting video-wise dissimilarity matrix insensitive to crucial
features that unfold over time. Therefore, we adopted MVPA to
utilize spatial information to decode imagery free of constraints
on any representational dimension.

One additional participant was excluded from MVPA due to
his lack of response to the coin video in all HS sessions, making
the sample size n = 24. Beta estimates of each video category
from all three sessions in imagery (IS and IN) or hearing (HS
and HN) conditions were obtained and were used to train and
test a L2-norm SVM available through LIBSVM (Chang and Lin
2011). We used a regularization parameter C = 1 and scaled the
data at a range of 0–1. To efficiently test which voxels across
the brain could be used for accurate classification, we moved
spherical searchlights (Kriegeskorte et al. 2006) throughout the
brain. To avoid the choice of radius from biasing our results, we
conducted searchlight analyses with varying radii from 1 to 8
voxels. The accuracy maps obtained using a radius of four voxels
were visualized as surface renderings.

To decode video categories within a condition, we used a leave-
one-session-out crossvalidation scheme. In each decoding step,
two out of three sessions in the condition were used to train an
SVM classifier, and the remaining session was used as test data to
decode the 10 video categories from multivoxel patterns. The aver-
age classification accuracy from all three decoding steps, each
having a different test session and two corresponding training
sessions, was calculated and assigned to the center voxel of the
searchlight to generate a decoding accuracy map.

To decode video categories across IS and IN, we used a two-
way leave-one-session-out crossclassification scheme. Similar to
the previous scheme, two sessions from the IS condition were
used to train a classifier, but the test data, this time, were one
session from the IN condition. This procedure was iterated for all
three IN sessions, each using a different combination of two IS
sessions as training data. Next, the IS sessions were used as test
data for classifiers trained with IN sessions. A cross-classification
accuracy map was generated using the average accuracy obtained
from a total of 6 decoding steps.

To perform group-level inference, we normalized the individual-
level accuracy maps into MNI space and smoothed them with
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a 6-mm FWHM Gaussian kernel to account for the individual
neuroanatomical difference. These accuracy maps were then
brought to one-sample t-tests, and the mean accuracy level
of each significant cluster (voxel-wise threshold: P < 0.005;
cluster-wise threshold: PFDR < 0.05) was displayed. For better
visualization, the range of data for display was controlled at 10%–
20% (0%–10% above the chance level of 10%) because accuracy
>20% was mostly observed in visual areas. To validate the
significance of decoding in specific ROIs across searchlight radii,
we also performed Wilcoxon signed-rank tests with decoding
accuracy from each MNI coordinate from each patient. These
nonparametric tests over specific regions complemented the
parametric t-tests for whole-brain mapping.

Time series extraction from ROIs
Based on univariate and MVPA results, we selected ROIs that
showed content-specific activations. For each ROI, voxel-wise
time courses in IS and IN were high-pass filtered at 1/128 Hz
and the estimated effects of nonimagery regressors (e.g. fixation
cue, button press, and head motion) were subtracted out. This
adjustment should increase model sensitivity in the connectivity
analysis by excluding activities induced by nonimagery events.
The resulting first principal component of each ROI was used for
DCM analyses.

Dynamic causal modeling
To test our central hypothesis about the descending projections
in generating prediction, we used DCM (Friston et al. 2003), a
well-established method that allows the inference of directional
brain connectivity modulated by an experimental condition (IS
and IN in the present study). DCM features a neuronal state
equation, which is coupled to a biophysically plausible model to
explain BOLD signals. We used the bilinear DCM that features the
following state equation:

ż = (A + Bu) z + Cu, (1)

where z denotes the hidden neural activity from all ROIs, and
the dot notation denotes change per unit time. The A matrix
represents baseline connectivity in the absence of external
stimulation. The B matrix represents the modulatory effects
of an experimental input u (IS or IN in the present study) on
connectivity between regions. The C matrix represents the direct
driving effect of each u on neuronal activity.

We first specified motor-to-sensory and memory-to-sensory
network models for IS and IN, respectively. Each imagery condition
could drive the activity of a brain area (C matrix) or modulate
cortico-cortical connectivity between areas (B matrix). We speci-
fied an all-1s A matrix (i.e. enabled baseline connectivity between
every ROI pair) for both motor-to-sensory and memory-to-sensory
models because we did not have any prior hypothesis regarding
baseline connectivity. Enabled parameters had Gaussian priors
with zero mean and non-zero variance, while the others had zero
variance. The neural activity z was coupled with a biophysically
informed forward model (Friston et al. 2003; Zeidman, Jafarian,
Corbin, et al. 2019) to predict the BOLD time series. The standard
(single-state, deterministic) DCM was used. A slice timing model
was used in alignment with the slice timing correction performed
during preprocessing.

For subject-level model inversion, our goal was to find param-
eter estimates that maximize log model evidence. DCM uses
a variational Laplace scheme to approximate model evidence
with negative variational free energy (Friston et al. 2007). This

estimation scheme also penalizes model complexity calculated
as the Kullback–Leibler divergence between the priors and the
posteriors. Thus, DCM evaluates how well the model achieves a
trade-off between accuracy and complexity.

The expected parameter values and the posterior covariances
at the subject level were then brought to a parametric empirical
Bayes (PEB) analysis to make inferences about the group-level
effects (Friston et al. 2016; Zeidman, Jafarian, Corbin, et al. 2019;
Zeidman, Jafarian, Seghier, et al. 2019). In terms of the between-
subject design matrix, since our experimental design involves no
between-subject factors, the design matrix was simply an all-1s
vector X = [1 1 . . . 1 1]T to model commonalities across subjects.
In addition, random effects (unexplained between-subject vari-
ability) on parameters were assumed to account for individual
differences.

Having estimated parameters of the motor-to-sensory and
memory-to-sensory full models and specified candidate reduced
models by “switching off” some parameters, we then performed
Bayesian model reduction (BMR) (Friston et al. 2016) to analytically
derive the evidence and parameters of the reduced models.
We compared the evidence of each reduced model to find the
winning model as well as pooled evidence of models belonging to
each model family. We also plotted parameters that had positive
evidence ( posterior probability, Pp> 0.75) of being present versus
absent, assessed by the Bayesian model average (BMA) on all
reduced models.

After mapping out the functional motor-to-sensory and
memory-to-sensory descending networks using IS and IN data,
respectively, we tested the hypothesis that the two motor-to-
sensory and memory-to-sensory networks were differentially
implemented in two types of imagery with 2 approaches.

First, we “swapped” the data-model combination by reinverting
the full motor-to-sensory and memory-to-sensory DCMs using
data from the other imagery condition. That is, we used IN data
(BOLD time series and imagery events in the condition) as input to
the specified motor-to-sensory DCM and used IS data for memory-
to-sensory DCM. We hypothesized a difference in the explained
variance and/or parameter estimate between the pairs of DCMs
with the same model structure but fitted with different data.
This approach keeps the model structure as specified in the
previous separate DCMs. The explained variance from the pairs
of DCMs was subject to a two-sided Wilcoxon signed-rank test.
For model parameter estimates, because they correspond to a
multivariate Gaussian density, we computed each parameter’s
mean and variance with the leading diagonal of the covariance
matrix. To compare the posterior distributions yielded by a model
with different data, we performed z-tests using the mean and
variance of each parameter estimate.

Second, we designed a “fully mixed” model with all motor
(left PMC), memory (bilateral PPC), and sensory ROIs (left IPL
and bilateral pSTG). In the full model, IS and IN modulated both
motor-to-sensory (left PMC to left IPL then to bilateral pSTG)
and memory-to-sensory (bilateral PPC to left IPL and bilateral
pSTG) connections. We ran Bayesian model comparison (BMC)
to compare the full model with reduced models where (i) IS
specifically modulates motor-to-sensory connections and only
drives left PMC, (ii) IN specifically modulates memory-to-sensory
connections and only drives bilateral PPC, and (iii) the combina-
tion of (i) and (ii) a.k.a. no mixing at all. If the reduced models
explain the data more efficiently as measured by free energy, it
will support the distinctness of the two networks, as enabling
modulatory effects of 1 imagery condition on the noncorrespond-
ing connections would not explain the data better. This approach,
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however, requires fitting a DCM with a larger parameter space (6
nodes, 36 A parameters, 26 B parameters, and 6 C parameters) and
thus might be vulnerable to underfitting.

Results
Behavioral results
The completion and success of mental imagery are hard to assess
behaviorally because imagery is an internal experience. We relied
on the timeliness of the participants’ vividness report to infer
whether they performed the imagery tasks instructed. Partic-
ipants actively engaged in IN and IS as the response rate of
vividness rating after each trial was at ceiling (mean = 98.20%,
SD = 3.23%). Mean vividness score in IS (mean = 3.53, SD = 0.48)
was significantly larger than that in IN (mean = 2.90, SD = 0.60) as
revealed by a two-sided paired t-test (t24 = 5.57, P = 10−5). Accuracy
of detecting the catch trials (hit and correct rejection) was also
high in both HN (mean = 98%, SD = 3.49%) and HS (mean = 95%,
SD = 5.17%).

Common activations in auditory cortices
accompanied by differential motor and memory
activations
To test the hypothesis that the auditory cortex is activated as
the sensory endpoints of descending signaling, we first carried
out whole-brain univariate analyses. We found overlapping
activations in both IS and IN in the bilateral posterior part
of superior temporal gyri and sulci (pSTG and pSTS). The
common activation in both IS and IN also extended to the
left IPL that anatomically covered parts of parietal operculum,
posterior supramarginal gyrus, and planum temporale (Fig. 1c;
for whole-brain surface rendering, see Supplementary Fig. S1).
In IS, activations also extended to left anterior STG (aSTG),
which is consistent with previous findings of aSTG harboring
higher-level linguistic representations (e.g. phonemes and words;
DeWitt and Rauschecker 2012). Activations at pSTG and IPL
were observed in the hearing conditions (Supplementary Fig.
S2), further supporting that these regions mediate auditory-like
representations.

Next, we contrasted IS with IN to examine differential activa-
tions that would likely distinguish upstream networks underlying
prediction generation (Fig. 1d). We took a minimum statistics
approach (Nichols et al. 2005) to select voxels that showed both
significant activity during 1 type of imagery and significant dif-
ference over the other (e.g. IS > IN masked with IS activations).
IS induced stronger effects than IN in the frontal motor network,
including the left premotor cortex (PMC) and presupplementary
motor area (preSMA). IN activated the frontoparietal network
comprising the left ventrolateral prefrontal cortex (vlPFC) and
bilateral PPC and activated the cingulo-opercular network (CON)
comprising the dorsal anterior cingulate cortex (dACC) and bilat-
eral frontal operculum/anterior insular (FO/aINS).

Motor, memory, and auditory systems represent
imagery contents
High decoding accuracy observed in the visual cortex demon-
strated the validity of our decoding method since the videos
differed in visual stimulation. Moreover, we found above-chance
accuracy (chance level = 10%) in bilateral pSTG and left IPL in
both IS (Fig. 2a), IN (Fig. 2b), and comparable hearing conditions
(Supplementary Fig. S3). These results support our hypothesis
that specific auditory representations were activated in a top-
down manner as auditory endpoints in the descending networks.

Consistent with univariate results, significant decoding of
videos was found in the left PMC in IS. This decoding of imagery
contents in the frontal motor region without participants’ overt
movement suggests a motor representation space in the motor
upstream network (Fig. 2a).

For IN, decoding accuracy was significantly above chance in
bilateral PPC, but not in vlPFC nor in the CON (Fig. 2b). Despite
significant decoding observed in bilateral PPC during IS, two-sided
paired t-tests (for whole-brain mapping) and Wilxocon signed-
rank tests (for data from ROIs) showed that the decoding accuracy
in parts of PPC (left intraparietal sulcus and right superior parietal
lobule) was significantly higher in IN than that in IS reliably across
searchlight radii (Fig. 2c), suggesting memory representations in
PPC in addition to putatively visual representations commonly
available in both conditions (confirmed by a cross-classification
analysis, Supplementary Fig. S4).

Putting together the univariate and MVPA results, the selective
activations and content specificity of PMC in IS, PPC in IN, and
the auditory cortex in both conditions supported our first hypoth-
esis of common sensory endpoint and our second hypothesis
of differential upstream systems for motor-based and memory-
based predictions. We next tested our last hypothesis about the
descending structures mediating the two types of predictions by
examining the cortico-cortical connectivity with DCM.

Motor-to-sensory and memory-to-sensory
networks assessed by DCM
For connectivity analyses, we selected ROIs based on univariate
and MVPA results. The representative voxel coordinate of each
ROI and their associated t-values for each contrast are reported
in Supplementary Table S2 and all selected voxels are visualized
in Fig. 3a. Our criteria are summarized below. For auditory ROIs,
we selected areas that showed increased BOLD magnitude and
representational patterns in both IS and IN as well as hearing con-
ditions, leading to our choice of left pSTG (sphere center x = −50,
y = −46, and z = 12) and its right homolog (sphere center x = 62,
y = −36, and z = 18). Given its consistent appearance revealed by
multiple analyses, left IPL (sphere center x = −54, y = −38, and
z = 24) was also selected to test whether it serves as a mediating
hub for motor-to-sensory and/or memory-to-sensory descending
networks. As for the motor ROI, we included left PMC (sphere
center x = −38, y = 0, and z = 36) based on its significantly higher
activity during IS than IN and its content-selective pattern during
IS. All ROIs mentioned above consisted of gray matter voxels
within spheres with a radius of 4 mm. Specifically, the small
radius ensured that the left pSTG and left IPL ROIs, despite their
spatial proximity (Euclidean distance = 14.97 mm), had no shared
voxels nor smoothing-induced (FWHM = 6 mm) data contamina-
tion. Left and right PPCs were selected as memory ROIs, and
due to their being large and nonspherical clusters, we used the
conjunction of the following contrasts to select all PPC voxels that
showed significant effects: IN, IN > IS, IN MVPA, and IN > IS MVPA.
The resulting left PPC ROI entailed 120 voxels (centroid x = −20,
y = −72, and z = 40) and right PPC ROI entailed 548 voxels (centroid
x = 24, y = −60, and z = 54).

We used DCM to model activities in these ROIs to infer effective
connectivity between the motor, memory, and sensory nodes,
which could potentially mediate two distinct types of prediction.
We set IS as the driving input to left PMC in the motor-to-sensory
model and IN as the driving input to bilateral PPC in the memory-
to-sensory model. Most importantly, we specified a priori imagery-
modulated connections that reflect changes in connectivity dur-
ing a specific mental operation.
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Fig. 2. Results of MVPA. a) Decoding of video categories in IS. Top: Thresholded surface rendering of decoding accuracy using a moving searchlight with
a radius of 4 voxels. Bottom: Decoding accuracy at ROIs across different radii (1–8 voxels). The triplet numbers in brackets denote MNI coordinate of
the searchlight center. Asterisks denote significance level of decoding accuracy above-chance level (10%) evaluated by a Wilcoxon signed-rank test. b)
Similar to (a) but for classification in IN. c) Top: A coronal view and a surface rendering of areas showing higher decoding accuracy in IN than IS. Bottom:
Classifier performance in bilateral PPC during IS and IN across searchlight radii. Asterisks denote the significance level of decoding accuracy higher in
IN than IS evaluated by a Wilcoxon signed-rank test. For all panels, error bars indicate 95% confidence interval. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.
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Fig. 3. Motor-to-sensory and memory-to-sensory descending networks assessed by DCM. a) ROIs used for DCM. ROIs were spherical with a radius of
4 mm except for bilateral PPC ROIs, which were selected based on contrast conjunctions. b) Graphical illustration of the full model of the motor-to-
sensory descending network. The arrows pertain to connections modulated by IS. The baseline connections and driving inputs are not presented in the
plot. c) Family-wise BMC of the two motor-to-sensory descending model factors (descending structure and sensory endpoints). Numbers on the right
denote posterior probability. d) BMA of effective connectivity parameters for the motor-to-sensory descending network. Parameters that reached the
significance level of posterior probability (Pp) > 0.75 were shown in black and otherwise in gray. Numbers out of paratheses denote parameter estimate
in the unit of Hertz and numbers in paratheses denote posterior probability. e–g) DCM results similar as (b–d) but for the memory-to-sensory descending
network.

To construct a full motor-to-sensory DCM, we allowed IS to
modulate 5 connections: “direct” connections from left PMC to
bilateral pSTG, and “indirect” connections from left PMC to left
IPL and then to bilateral pSTG (Fig. 3b). We then constructed 11
reduced models with a subset of these connections “switched off”
according to two factors concerning the descending architecture
(direct-only/indirect-only/direct and indirect/null) and auditory
endpoint (left pSTG/right pSTG/left and right pSTG/null). The null
model contained no modulated descending connection and thus
offers the null hypothesis. A graphical illustration of all reduced
models is shown in Supplementary Fig. S5.

Under the BMR scheme (Friston et al. 2016; Zeidman, Jafarian,
Corbin, et al. 2019; Zeidman, Jafarian, Seghier, et al. 2019), the free
energy (lower bound on model evidence) (Friston et al. 2007) of
each reduced model was derived. This allowed us to perform BMC
to systematically infer whether motor-to-sensory connections
were enhanced in IS, and if so, through what route (direct vs.
indirect) and in which hemisphere they ended. BMC returned the
single winning model to be the full model itself with a posterior

probability (Pp) >0.99. We pooled reduced models according to
the two factors to perform family-wise Bayesian model selection
(Fig. 3c), which revealed that the hybrid architecture entailing
both direct and indirect connections to bilateral pSTG was the
most likely (Pp > 0.99 for both families). We then summarized
model parameters across all models by taking the weighted aver-
age of parameters from each model with the weight determined
by each model’s Pp, an approach known as BMA (Jennifer et al.
1999). The BMA results (Fig. 3d) confirmed the essence of all 5 IS-
modulated connections that all had a positive mean and Pp > 0.99.
All these results together suggest a motor-to-sensory descending
architecture originating at the left PMC, mediated by left IPL, and
ending at bilateral pSTG during IS.

A similar procedure was applied to construct and evaluate
memory-to-sensory DCMs using data from the IN session.
This DCM model specified entailed IN-modulated connections
between bilateral PPC, “direct” connections from bilateral PPC to
pSTG, and “indirect” connections from PPC to left IPL and then
to bilateral pSTG (Fig. 3e); 112 reduced models were constructed
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according to 4 factors: descending origin (left PPC/right PPC/left
and right PPC), auditory endpoint (left pSTG/right pSTG/left and
right pSTG/null), descending architecture (direct-only/indirect-
only/direct and indirect/null), and PPC mutual connection
(present/absent). A graphical illustration of key connections in
reduced models is shown in Supplementary Fig. S6.

BMC over reduced models of the memory-to-sensory DCM
showed that the most probable (despite the relatively low
Pp = 0.18) model entailed descending connections initiating from
bilateral PPC (without mutual connection) to bilateral pSTG via
both direct and indirect pathways. Results of family-wise model
selection over the two most important factors are shown in
Fig. 3f. Regarding the descending architecture, evidence near
equally supported the direct-only architecture (Pp = 0.47) and the
hybrid architecture with both direct and indirect connections
(Pp = 0.52). Bilateral PPC (Pp = 0.65) was more probable than
right PPC alone (Pp = 0.35) to be the descending source, and
bilateral pSTG (Pp = 0.69) was more probable than right pSTG
alone (Pp = 0.30) to be the auditory endpoints. When summarizing
individual parameter estimates using BMA, we found three
significant (Pp > 0.75) connections along the direct route (Fig. 3g):
left PPC to right pSTG (mean = −0.23 Hz, Pp = 0.82); right PPC to
left pSTG (mean = 0.28 Hz, Pp = 0.85); and right PPC to right pSTG
(mean = 0.54 Hz, Pp > 0.99). Overall, these results spoke for the
existence of a memory-to-sensory projection from bilateral PPC
to bilateral pSTG. IN modulated the left PPC to pSTG connection
in an inhibitory manner while enhancing right PPC to pSTG
connections, suggesting a hemispheric division of function. The
lack of evidence in family-wise model selection and BMA did
not support any mediating role of left IPL in memory-to-sensory
transformation.

Distinct motor-to-sensory and
memory-to-sensory descending networks in
generating predictions
To test the functional distinctness of the motor-to-sensory and
memory-to-sensory networks, we first “swapped” the data-model
combination and then compared variance explained by the DCM
as well as PEB parameter estimates in each model fitted with IS
and IN data. To complement the analysis, we fitted a mixed model
with all motor-to-sensory and memory-to-sensory connections
modulated by both IS and IN.

We found that the motor-to-sensory DCM fitted with IS data
yielded significantly higher explained variance (mean = 14.96%)
than with IN data (mean = 6.86%), as revealed by a two-sided
Wilcoxon-signed rank test (P = 0.01, Fig. 4a). However, no signif-
icant difference in the mean parameter estimates (P > 0.09 for
all five parameters, two-sided z-test) was found (Fig. 4b). These
results suggest that the motor-to-sensory model cannot effec-
tively explain IN data despite the fact that “forced” modeling
fitting yielded similar parameter estimates.

On the other hand, we did not see a significant difference
(P = 0.90) in explained variance when fitting the memory-to-
sensory DCM with IS and IN data (mean explained variance = 7.28
and 7.82) (Fig. 4c). The insignificance persisted after removing
the obvious outlier (P = 0.63). Significant difference in several
PEB parameters was observed (Fig. 4d). Notably, the modulated
connections from right PPC directly to bilateral pSTG were
significantly higher in IN than in IS (right PPC to left pSTG,
P = 0.033; right PPC to right pSTG, P < 0.001). Such differences
suggest that the memory-to-sensory architecture identified in
the previous section does not explain activities during motor-
based prediction. Whereas, several connections involving left

IPL in the indirect pathway yielded higher parameter estimates
using IS data (left PPC to left IPL, P < 0.001; left IPL to right pSTG,
P = 0.006). These results were consistent with the indirect pathway
found in the motor-to-sensory DCM, as left IPL exerted excitatory
connectivity to pSTG even in a memory-to-sensory DCM where no
motor node was included. These results also explained why there
was no significant decrease in explained variance when fitting
the memory-to-sensory DCM with IS data, as some pSTG activity
might have been explained by IPL-exerted connectivity.

As for the mixed model (Fig. 4e), despite an expected low
explained variance (4.59%, SD = 5.34%), we found that a reduced
version of the model explained the data most efficiently with
a posterior probability of 99.97% via BMC. The reduced model
is a “non-mixing” one where IS specifically modulates motor-to-
sensory (PMC to IPL to pSTG) connections and IN specifically
modulates memory-to-sensory (PPC to pSTG) connections. That
the no-mixing model outperforms the full model or partially
mixed models is another set of evidence supporting that the
modulatory effects of imagery pertain to the specific networks.
As the explained variance for the mixed model is poor in the
first place, this result should be interpreted with caution and
would be better viewed as complementary results that are largely
consistent with the findings from data-model swapping.

Taking together the results from swapping data-model combi-
nations and comparing a mixed model against reduced nonmix-
ing models, we showed that distinct functional motor-to-sensory
and memory-to-sensory descending networks and different sub-
regions of parietal lobe (IPL vs. PPC) mediate the generation of
content-specific auditory representations in IS and IN.

Discussion
Our study using fMRI with a dual imagery paradigm complements
the existing findings on prediction-perception interactions (e.g.
predictive cancelation). Although previous studies have demon-
strated that predictions modulate sensory processing even at
the lowest levels, it is methodologically challenging to study the
neural origins that convey descending predictions in the presence
of simultaneous sensory inputs. With respect to this research
focus, imagery highly resembles prediction in terms of gener-
ating top-down sensory representations (Moulton and Kosslyn
2009; Williams 2021) and thus serves as a useful paradigm for
investigating predictive processing. Therefore, with the aid of the
novel imagery paradigm, we have characterized the neural imple-
mentation of sensory prediction via descending projections from
motor and memory systems to the auditory cortex. Our results
revealed the motor and memory systems as independent sources
of prediction. The differential involvement of IPL and PPC in
the motor-based and memory-based prediction pathways further
suggests a functional division of the parietal lobe for routing the
generation processes. The interareal communicative neural struc-
tures mediate distinct predictive processes via representational
transformation, converging motor and memory information into
sensory format for adaptive behavior.

Motor-based prediction originates from the PMC
Significant activity was observed in the left PMC in the motor-
based prediction task of IS and its representational specificity
was supported by MVPA (Figs. 1 and 2). These results are con-
sistent with previous studies that stress PMC’s role in speech
planning (Castellucci et al. 2022) as well as studies on speech
imagery (Tian et al. 2016; Li et al. 2020; Proix et al. 2022). In
terms of lateralization, left PMC was more engaged in speech
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Fig. 4. Motor-to-sensory and memory-to-sensory networks differentially take place during IS and IN. a) Variance explained by the motor-to-sensory DCM.
Red and blue circles denote results obtained with data from IS and IN sessions, respectively. Data points from each individual are joined by a gray line.
The means of IS and IN data are indicated by thick solid lines. b) PEB estimates for all five imagery-modulated connections in the motor-to-sensory DCM.
c and d) Similar to (a) and (b) but for explained variance and PEB estimates of the memory-to-sensory DCM. e) Results of BMC of fully mixed and reduced
models. A full motor-to-sensory and memory-to-sensory mixed DCM that models concatenated data from IN and IS sessions (left-most illustration) was
compared against 3 reduced versions of the full model (see main text for detailed specifications). Solid lines denote connections modulated by imagery
conditions, and dotted lines denote the enabled driving effects of imagery conditions. Red, blue, and magenta represent the imagery conditions IS, IN,
and both IS and IN. The strongest model evidence was obtained on the fourth model that comprised no mixing, suggesting the distinct motor-to-sensory
and memory-to-sensory networks. Error bars indicate 95% confidence interval. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.

prediction. Crucially, the directed connectivity from PMC to pSTG
was enhanced by motor-based imagery, thus revealing PMC’s
fundamental role as the upstream motor system in predicting the
auditory consequence of speech. Two other common motor areas,
preSMA and the inferior frontal gyrus (Brodmann areas 44 and
45, see Supplementary Fig. S1), were also activated. Yet, neither of
them possessed significantly decodable representations.

Through the lens of predictive motor control, our results sup-
port the existence of the hypothesized efference copy signal (Miall
and Wolpert 1996; Wolpert and Ghahramani 2000). By definition,
an efference copy is derived as a copy of the motor plan that

likely arises in PMC and conveys sensory prediction to the sensory
cortex in a descending manner, which is the neural hierarchy
we observed in motor imagery. In addition to the neural imple-
mentation, the functional implication of the efference copy is
that it enables motor correction and state estimation. While the
present study did not involve behavioral components to assess
such functions, previous studies (Tian and Poeppel 2013, 2015;
Kilteni et al. 2018; Tian et al. 2018; Ma and Tian 2019) have shown
that the brain compares motor-based sensory prediction with
sensory afference and detects mismatch in basic features such
as timing and intensity as well as phonological features. Overall,
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by leveraging the imagery paradigm, we have provided evidence
for both the descending neural architecture and functional prop-
erties of efference copy in speech.

The descending signal originating from the motor system can
also be understood from the more contemporary framework of
active inference (Adams et al. 2013; Parr et al. 2022). While the
two frameworks commonly stress the importance of descending
connections from the motor system to the sensory cortex, the
interpretation of such connections are different (Friston 2011).
Rather than viewing the descending predictive signal uniformly
as a copy of the motor command as in predictive motor control,
active inference divides predictions into proprioceptive and exte-
roceptive modalities. Proprioceptive predictions supply setpoints
for motor reflexes in the spirit of the equilibrium point hypothesis
(Feldman and Levin 1995; Feldman 2009), a.k.a. equivalent of
motor commands. Exteroceptive (e.g. auditory) prediction on the
other hand corresponds to the efference copy/corollary discharge
and is integral to perceptual inference. It is worth noticing that
since participants produced no overt speech in the present study,
the activations we found over PMC would not correspond to the
vocal motor command or proprioceptive predictions. Instead, they
could support the generation about exteroceptive predictions, as
discussed below.

IPL relays motor-to-sensory predictive signaling
Motor-to-sensory information flow from the PMC to pSTG was
achieved by both direct and indirect routes (Fig. 3). The indirect
route features IPL as a relaying hub (also referred to as the
Sylvian parietal–temporal area). These results are consistent with
previous reports of IPL activation in both speech perception and
production (Buchsbaum et al. 2001; Hickok et al. 2003, 2009).

The intermediate step of IPL in the motor-based prediction gen-
eration route could be an auditory-motor interface and computes
the transformation between motor and auditory representations
(Hickok 2012). Alternatively, because movement of articulators
yield speech, the computation of auditory prediction could be
mediated by predicting the sensorimotor status of articulators
(Tian and Poeppel 2010, 2012). Thus, the IPL could be an intermedi-
ate stage for an abstract somatosensory prediction in a functional
continuum between the somatosensory regions in the anterior
part of parietal lobe to the final auditory prediction starting in
the posterior part of temporal lobe. Somatosensory prediction has
been observed in the secondary somatosensory area and extend-
ing to IPL (Kilteni and Ehrsson 2020). In the speech domain, the
partially redundant predictions in the sensorimotor and auditory
domains may provide computational benefits of detecting distinct
sources of noise.

PPC mediates memory-to-sensory predictive
signaling
PPC was active in the memory-based prediction task of IN and
harbored imagery-specific codes in IN (Figs. 1 and 2). While it is
possible that the strong activation and decoding in PPC could be
explained by additional visual attention to aid auditory retrieval,
the DCM results ruled out the possibility as they further revealed
enhanced connectivity between right PPC and bilateral STG,
suggesting right PPC is the crucial origin of the memory-to-
sensory prediction network (Fig. 3). The role of PPC in episodic
memory has been demonstrated in a broad range of studies
employing paradigms such as N-back (Owen et al. 2005; Barch
et al. 2013), retention (Kwak and Curtis 2022) and memory search
(Sestieri et al. 2014). Directed connectivity from PPC to the sensory
cortex has also been found in visual imagery (Dentico et al. 2014;

Dijkstra et al. 2017). Altogether, these findings further support
PPC as a general episodic buffer in generating memory-based
prediction across memory tasks and modality.

Another interesting property is that the left PPC to STG connec-
tivity is reduced instead of enhanced as observed in its right PPC
to STG counterpart. This could be due to a hemispheric division of
PPC in the auditory memory or a functional-anatomical division
of PPC, as the left PPC ROI we selected is majorly composed of the
intraparietal sulcus, while the right PPC ROI majorly consists of
the superior parietal lobule.

The prefrontal cortex and hippocampus were less supported by
empirical evidence to be the origin in the memory-to-sensory net-
work as they lacked significantly decodable patterns. As the role
of vlPFC and hippocampus in memory maintenance and memory-
based prediction has been described in the literature (Davachi
and DuBrow 2015; Kumar et al. 2016), the discrepancy may arise
from the experimental design and analysis scheme. Throughout
our analyses, we modeled the imagery events as sustained boxcar
events. Since participants may recall the soundtrack of the videos
immediately after their initiation appearance, vlPFC and hip-
pocampus could support the initial retrieval of auditory memory
through visual–auditory association, which is then transferred
to PPC for maintenance. The interpretation is, however, hard to
assess due to the low temporal resolution of fMRI.

Outside of DSPM, we also found that the CON (including
FO/aINS and dACC/dmPFC) was more active in IN but lacked
decodable multivoxel patterns. This is consistent with previous
studies reporting CON to have a more modulatory rather than
the representational role in memory (Sestieri et al. 2014; Wallis
et al. 2015). Because our study focuses on representational
transformations in descending projections, we did not include
CON in DCM to avoid complicating the model. Yet, our data
suggest CON may have a role in modulating the memory-based
prediction and imagery.

Common auditory reactivation via different
descending projections
Common activation in both motor-based and memory-based
imagery in the auditory cortex agrees with previous work on
musical imagery (Halpern and Zatorre 1999; Li et al. 2020), speech
imagery (Tian et al. 2016; Proix et al. 2022), and imagery of
complex sounds (Bunzeck et al. 2005). Imagery induced similar
activations in the auditory cortices as hearing controls, supporting
the nature of sensory-like representation as the ending result
of prediction. The commonality in auditory reactivation in IS
and IN further suggests a sensory convergence of predictions
originating in different upstream networks. Together, the common
sensory activations by hearing and types of imagery hint at
a neuroanatomical foundation for the integration of various
predictive and stimulus-driven signals in the sensory system.
At a more microscopic level, such integration may take place
in distinct neural subpopulations in the sensory system, which
differentially respond to ascending sensation and descending
prediction (Bastos et al. 2012). A likely laminar organization for
such functional populations involves descending prediction sent
to the deep layers of the sensory cortex (Rao and Ballard 1999;
Kok et al. 2016). Further investigations adapting our paradigm can
aim to test this specific hypothesis, which will shed light on the
microcircuitry that integrates ascending input and descending
prediction.

One potential limitation of the dual imagery paradigm is
the coengagement of multiple cognitive processes that could
be confounds to the results. First, although our design of
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intersession order (HN–IN–IS–HS) discourages participants to
imagine linguistic elements during HN and IN, it could be
possible that participants recalled sounds and imagined speaking
simultaneously. However, while it is possible that common
activations in bilateral pSTG could be due to this simultaneous
imagery alternative, our DCM results suggest these activations
are largely due to differential descending connections. The
confound could also downgrade the statistical power when
detecting the difference between IN- and IS-related brain
activities. Nevertheless, our results spoke for such differences
and allowed us to locate putative motor and memory nodes that
contributed to the interareal communications. Second, due to the
nature of the IS task, simultaneous engagement of the language
processing in addition to the motor-to-sensory transformation
is also possible, which might explain the stronger activation
over the aSTG in IS (Fig. 1c and d). However, we believe that the
contribution of linguistic processing to the revealed motor-to-
sensory network is minimal since we uncovered motor-to-sensory
effective connectivity that bottom-up visual word form processing
would not predict.

Conclusion
In conclusion, using a dual imagery paradigm with fMRI, we found
that motor and memory systems project to the sensory system via
distinct network structures to generate sensory predictions. The
neural origin and interareal communicative structures constrain
the computations of representational transformation, creating
the emergent properties of the distinct predictive neural networks
for efficiently linking cognition with environment.
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